

 $I_{pn} = 500A...2500A$

Features

• Isolated plastic case recognized according to UL 94-V0

Advantages

- Easy installation
- Low power consumption
- Small size and space saving
- Only one design for wide current ratings range

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drivers
- Battery supplied applications
- Uninterruptible power supplies (UPS)
- Switched mode power supplies (SMPS)
- Power suppliers for welding applications

Application domain

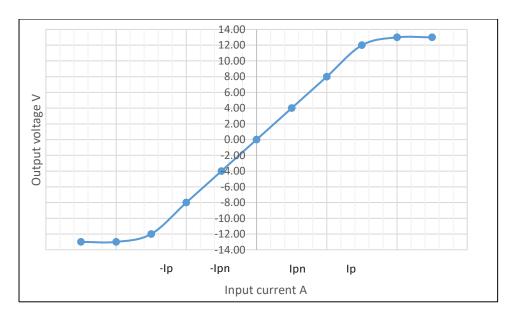
- Commercial
- Industrial

Standards

- EN 50178
- UL508

Insulation Characteristics

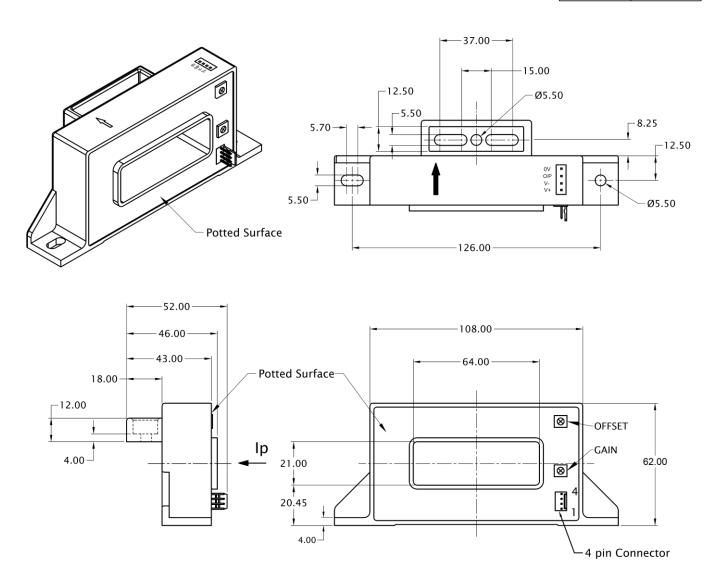
Parameters	Symbol	Value	Units	
Dielectric strength between primary and secondary terminals,50Hz, 60 seconds	V _d	4.9	kV	
Comparative tracking index	CTI	250	V	
Impulse withstand voltage 1.2/50μs	V_{v}	8.3	kV	
Insulation resistance at 500 VDC	R _{IS}	>100	ΜΩ	
Creepage distance		11.50	mm	
Clearance distance		11.00	mm	

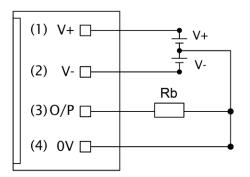

Product Range

Product Code	Primary Nominal Current (Ipn)	Primary Measuring Range (I _p)
HSM500T01	500A	±1500A
HSM600T01	600A	±1800A
HSM750T01	750A	±2250A
HSM850T01	850A	±2550A
HSM1K0T01	1000A	±3000A
HSM1K5T01	1500A	±4500A
HSM2K0T01	2000A	±5500A
HSM2K5T01	2500A	±5500A

Specifications (Unless otherwise specified temperature is 25°C)

Parameters	Symbol	Condition	Min	Тур	Max	Units
Burden resistance	R _b		10			kΩ
Output voltage	V _{out}	at $\pm I_{pn}$, $R_b = 10K\Omega$,		±4		V
Supply voltage (±5%)	Vs	operating at12V reduces the measuring range		±15		V
Current consumption at Ipn	l _{out}			20		mA
Overall accuracy) At Ipn (Excluding offset)	X _G			±1		%
Linearity error (Excluding offset)	Σ			<1		%
Output offset voltage	$V_{\rm off}$			± 20		mV
Hysteresis offset voltage	V _{OH}	at $I_P = 0$ after a primary current of I_{pn}		±30		mV
Temperature coefficient of V _{off}	TV_{Off}	-25 to +85 °C		± 1.0		mV/K
Temperature coefficient of V _{out}	TV _{OE}	-25 to +85 °C		± 0.1		%/K
Response time at 90% Of Ipn	t _{ra}			5		μs
Frequency bandwidth	BW	-3dB, small signal bw	DC		25	kHz
di/dt accurately followed	di/dt			>50		A/ µs
Ambient operating temperature	T _A		-25		+85	°C
Ambient storage temperature	Ts		-25		+85	°C
Mass	m			430		g


Input & Output Characteristics



Mechanical dimensions

Connection diagram

Hall Effect Current Sensor HSM500...2K5T01

- Connector on the product: Connector header, Part no-22-04-1041, Molex
- Suggested mating connector: Connector housing, Part no-22-01-1042, & corresponding pin part no: 08-50-0114, Molex
- Sensor mounting: 2 holes X Ø 5.5mm, M5 steel screws, recommended fastening torque 4 N-m.
- It is recommended to centrally locate the current carrying conductor or completely fill the central opening for optimum performance.
- Output is positive when current (Ip) flows in the direction of arrow.
- Ensure proper connection of Power supply to avoid damage to the Sensor.

Safety

• This Sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

- · Caution, risk of electrical shock
- When operating the Sensor, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).
- Ignoring this warning can lead to injury and/or cause serious damage.
- A protective housing or additional shield could be used.
- Disconnecting the main power must be possible
- Over currents (»I_{PN}) can cause an additional voltage offset due to magnetic remanence.
- The temperature of the primary conductor shall not exceed 100 °C.
- This Sensors may only be used in electrical or electronic systems which fulfil the relevant regulations (Standards, EMC Requirements)
- Pay attention to protect non-isolated high-voltage current carrying parts against direct contact (e.g. with a protective housing)
- When installing the sensor, ensure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.

General information:

Electrohms the reserves right to make modifications on products for improvements without prior notice.