
Hall Effect Current Sensor HJA780T02

 $I_{PN} = 780A$

Features

- · Split core type.
- · Open loop current sensor.
- · Voltage output.
- · Protection from miss-wiring in any combination.

Advantage

- . Excellent accuracy
- . Very good linearity
- . Low temperature drift
- . Optimized response time
- . No insertion losses
- . High immunity to external interference

Applications

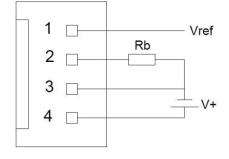
- . Battery Monitoring
- . Solar String Monitoring
- . EV charger

Application domain

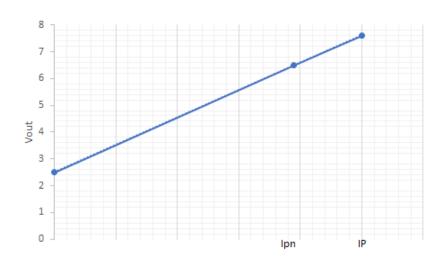
- . Commercial
- . Industrial

Maximum ratings

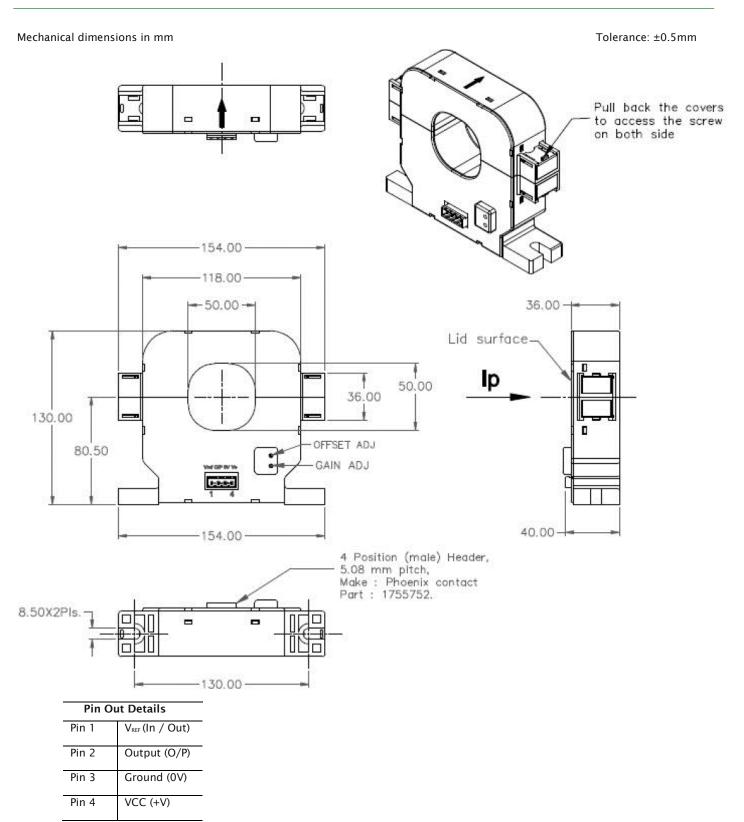
Parameter	Symbol	Value	Unit
Maximum supply voltage (working) -25 to 85°C	<u>+</u> Uc	+18.0	V
Primary conductor temperature	Ts	85	°C
maximum steady state primary current -25 to 85°C	I _{PN}	780	A
RMS Voltage For Ac Insulation Test,50Hz,1 Min	U _d	5.5	KV
Comparative Tracking Index	CTI	275	V
Insulation Resistance	R _{is}	>100	MΩ



Electrical data HJA780T02


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Primary current, range DC	l _P			1000		Α
Burden Resistance	R₀			10000(min.)		Ω
Output Voltage @I _{PN =} 0A	V_{off}	$R_b = 10K\Omega, @25^{\circ}C$		2.5 ± 0.025		V
Output Voltage @I _{PN} (V _{out})	V_{out}	R _b = 10KΩ, @25°C		2.5 + 4		V
Supply Voltage	<u>+</u> Uc			+12 to +18		V
Current Consumption	I _c			<18Typical		mA
Overall Accuracy At I _{PN}	X _G	@25°C		1		%
Linearity Error	Σι	10 to 100% of I _{PN} - 25 to 85 °C		0.5		%
Output low pass filter cut off frequency (fc)	Fc			1.4		Hz
Temperature coefficient of Vout	TV _{OE}	-25 to +85 °C		< 500		PPM / K
AC attenuation		@ 1500Arms, 50Hz		-24		dB
Frequency Bandwidth @ -3db (fbw)	BW	-3dB, small signal bw		DC to 1.4		Hz
Ambient Operating Temperature	T _A			-25 to +85		°C
Ambient Storage Temperature	Ts			-40 to +100		°C
Mass	m			1000		g

Connection Diagram


Date:27.08.2018

Input & Output Characteristics HJA780T02

Date:27.08.2018

Rev: 01- Provisional

Safety

- This Current Transformer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.
- Caution, risk of electrical shock

When operating the Current Transformer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

- Ignoring this warning can lead to injury and/or cause serious damage.
- A protective housing or additional shield could be used.
- Main supply must be to be disconnected.
- Ensure proper connection of Power supply to avoid damage to the Sensor.
- If IP flows in the direction of the Arrow Isek is positive
- Over currents (»I_{PN}) or the missing of the supply voltage can cause an additional remaining magnetic offset
- The temperature of the primary conductor may not exceed 100 °C
- This Sensors may only be used in electrical or electronic systems which fulfil the relevant regulations (Standards, EMC Requirements...)
- Pay attention to protect non-isolated high-voltage current carrying parts against direct contact (e.g. with a protective housing)
- When installing this sensor, you must ensure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections
- Disconnecting the main power must be possible