

Hall Effect Voltage Sensor VH1K0T02

Vpn = 1000 V

Features

- . Closed loop voltage sensor
- . Through hole PCB mounting type
- . current output.

Advantage

- . Excellent accuracy
- . Very good linearity
- . Low temperature drift
- . Optimized response time
- . Wide frequency bandwidth
- . No insertion losses
- . High immunity to external
- interference . Current overload capability.

Applications

- . Used for the measurement of electric voltage, AC, DC
- . Pulsed in Electrical & Electronic equipment.

Application domain

- . Commercial
- . Industrial

Maximum ratings

Parameter	Symbol	Value	Unit
Maximum supply voltage (working) -40 to 85°C	<u>+</u> Uc	±15V	V
Primary conductor temperature	Ts	85	°C
maximum steady state primary Voltage -40 to 85°C	V _{PN}	1000	V
Dielectric Strength between Pri to Output terminal	Vw	2.5	KV
Comparative Tracking Index	CTI	600	V
Insulation Resistance	R _{is}	≥100	MΩ

Electrical data

VH1K0T02

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Primary Nominal Rms Voltage	V _{PN}			1000		V
Primary Voltage, Measuring	VP			±1500		V
Range						
Primary Nominal Rms Current	I _{PN}			10		mA
Primary Current, Measuring	P			±14		mA
Range						
Burden Resistance	R _b	$@IPN = \pm 10mA$	150		340	Ω
		$@IPN = \pm 14mA$	150		250	Ω
Resistance Of Secondary Winding	Rs	@ 70 °C		55		Ω
Resistance Of Primary Winding	Rp	@ 70 °C		190		Ω
Output Current at I _{PN}	out			25		mA
Number Of Secondary Turns	Ns			2500 :		
				1000		
Supply Voltage	<u>+</u> U _c	10% variation		±15		V
Current Consumption	lc	$+U_{c} = +15$ V		$11 + I_{out}$		mA
Temperature Variation Of Io,	Іот			≤ 0.4		mA
Referred to Primary						
Output offset current $@I_{PN} = 0$	OFF			±0.20		mA
Linearity Error	ΣL	-40 to 85 °C		<0.2		% of
						I _{PN}
Overall Accuracy At I _{PN}	X _G	@-40 to +85°C		< ±0.8		% of
						I _{PN}
Creepage distance				19.5		mm
Clearance distance				19.5		mm
Ambient Operating Temperature	TA		-40		+85	°C
Ambient Storage Temperature	Ts		-40		+90	°C
Mass	m			30		g

Connection Diagram

Input Output Characteristics

Pin Out	Name		
1	+Ve		
2	-Ve		
3	Output		
4	+VCC		
5	-VCC		

Safety

General Data

- The housing and insulation resin (UL94 V0) are self-extinguishable upon fire
- · Mounting holes are provided in the housing mold for base mount, 2 fastening slots of O 6.5 mm
- Direction of current: a positive primary differential potential (UHT+ UHV- >0) generates a positive
- secondary output current on terminal output
- Power supply is protected against polarity reversal

Wiring and mounting instructions

These general instructions are not exhaustive and provide basis for proper installation of the sensors. Each configuration being different, please consult us for advice. (Note that non-proper installation or incorrect use of the sensor can result in sensor poor performances or malfunction)

Wiring diagram

- Connect primary voltage Vp to measure to HV+ and HV-
- Auxiliary supply voltage: bipolar voltage -VEE...0 V...+VCC

Precautions in electromagnetic environment

Due to their principle of operation (measure of magnetic field by the Hall effect probe), closed loop hall effect current sensors can be sensitive to strong magnetic fields. It is recommended to avoid positioning them to close to high current power cables.

Processing of the sensor output signal

Standard codes of practice advise that, before the signal is processed, a low-pass filter adapted to the bandwidth of the sensor is used. Also, in the case of digital processing of the signal, it is also recommended that the sampling frequency is adapted to the bandwidth of both the signal to be measured and the sensor.

In the event of sensor failure, the processing of the output signal should consider deterioration in performance (i.e. absence of signal or saturated signal) and rapidly and safely shut the system down.

Safety instructions

Our sensors must be used in electrical or electronic equipment with respect to relevant standards and safety requirements in accordance with the manufacturer's operating instructions

Caution, risk of electrical shock

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g. primary terminals, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be disconnected