

 $V_{pn} = 1000V$

Features

- Bipolar and isolated measurement up to 1500V
- Current output

Advantage

- Compact design
- Excellent accuracy (offset, sensitivity, linearity)
- Good response time
- Low temperature drift

Applications

- Single or three phase inverters
- Propulsion and braking chopper
- Auxiliary converter
- High power drives
- Substations

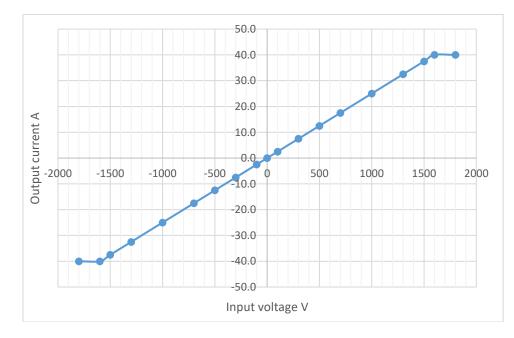
Application domain

- Traction
- Industrial

Standards

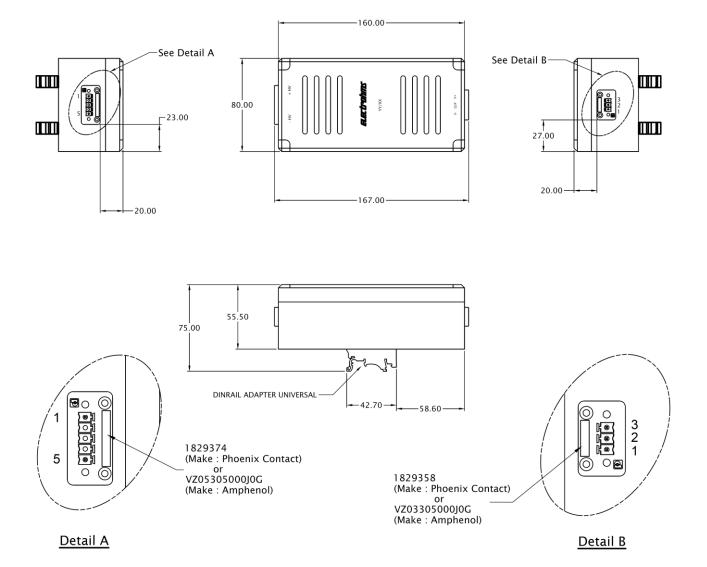
- EN 50178
- UL 508

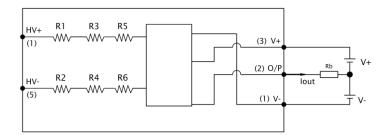
Insulation characteristics


Parameters	Symbol	Value	Units	
Dielectric strength between primary and secondary terminals, 50Hz, 60seconds	V _d	4.2	kV	
Comparative tracking index	СТІ		V	
Insulation resistance	R _{is}	≥100	MΩ	
Creepage distance		14.50	mm	
Clearance distance		14.50	mm	

Specifications (Unless otherwise specified temperature is 25°C)

Parameters	Symbol	Condition	Min	Тур	Max	Units
Input voltage nominal	V _{pn}			1000		V
Input voltage measuring range	Vp		-1500		+1500	V
Input current nominal	Ipn			8		mA
Burden resistance	R _b	with ±12V at Vpn= ±1000V	30		200	Ω
	5	with ±12V at Vpn= ±1500V	30		100	Ω
		with ±15V at Vpn= ±1000V	100		320	Ω
		with ±15V at Vpn= ±1500V	100		180	Ω
Resistance of secondary winding	Rs			45		Ω
Resistance of primary	Rp			124		kΩ
Output offset current at $V_{pn} = 0$	l _{off}			±0.20		mA
Output current at V _{pn}	l _{out}			25		mA
Turns ratio	К			3100:1000		
Supply voltage (±5%)	Vs		±12		±15	V
Current consumption	I _c	at ±15 V		12 +l _{out}		mA
Variation of I _{off} wrt temperature	l _{ot}	-25 to 70 °C		≤ 0.80		mA
Linearity error	Σ			<0.2		%
Accuracy at Vpn	X _G			±0.8		%
Response time 90% of V _{pn}	t _{ra}			<40.0		μS
Total primary power loss				8		W
Ambient operating temperature	T _A		-25		+70	°C
Ambient storage temperature	Ts		-40		+85	°C
Mass	m			350		g


Input Output Characteristics



Mechanical dimensions

GENERAL TOL. ± 1.0 mm	
ALL DIMENSIONS ARE IN 'mm'	SCALE -NTS

Connection Diagram

Voltage Sensor VHASM1K0T01-CB11

- Suggested mating connector for 3 pins: Terminal block socket, Part no.- 1827716, Phoenix contact
- Suggested mating connector for 5 pins: Terminal block socket, Part no.- 1827732, Phoenix contact
- Sensor mounting: Dinrail type
- lout is positive when Vp is applied to + HV terminal
- · Power supply and Output terminal is Not protected against polarity reversal

Safety

• This Current Transformer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

- Caution, risk of electrical shock
- When operating the Sensor, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).
- Ignoring this warning can lead to injury and/or cause serious damage.
- A protective housing or additional shield could be used.
- Disconnecting the main power must be possible
- Over voltage (»V_{PN}) or missing of the power supply voltage can cause an additional remaining magnetic offset.
- This Sensors may only be used in electrical or electronic systems which fulfil the relevant regulations (Standards, EMC Requirements)
- Pay attention to protect non-isolated high-voltage current carrying parts against direct contact (eg. with a protective housing)
- When installing the sensor, ensure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.

General information:

Electrohms the reserves right to make modifications on products for improvements without prior notice.