

Features

- Bipolar and isolated measurement up to 600V
- Current output
- Input and output connections with tab terminal

Advantage

- Compact design
- Excellent accuracy (offset, sensitivity, linearity)
- Good response time
- Low temperature drift

Applications

- Single or three phase inverters
- Propulsion and braking chopper
- Auxiliary converter
- High power drives
- Substations

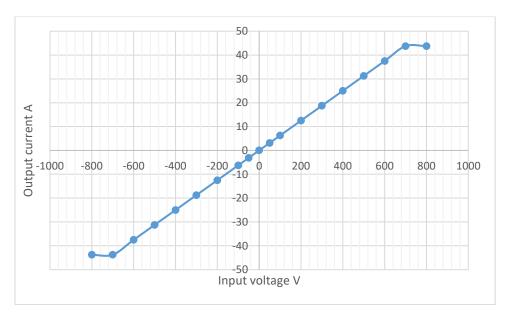
Application domain

- Traction
- Industrial

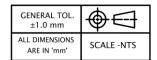
Standards

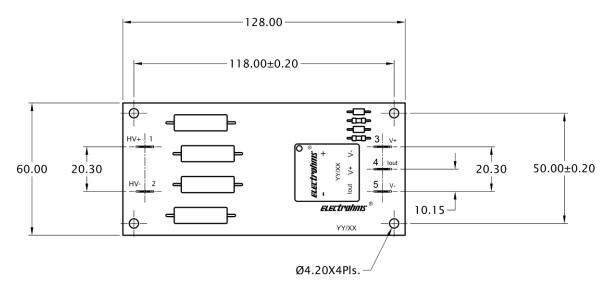
- EN 50178
- UL508

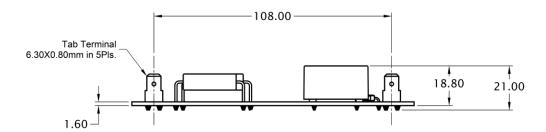
Insulation characteristics

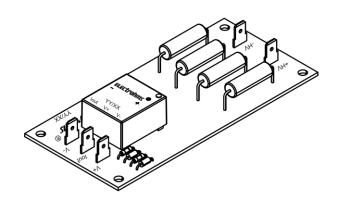

Parameters	Symbol	Value	Units
Dielectric strength between primary and secondary terminals, 50Hz, 60seconds	V _d	4.1	kV
Comparative tracking index	CTI	175	V
Insulation resistance	R _{is}	≥100	ΜΩ
Creepage distance		14.50	mm
Clearance distance		14.50	mm

Specifications (Unless otherwise specified temperature is 25°C)

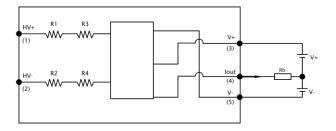

Parameters	Symbol	Condition	Min	Тур	Max	Units
Input voltage nominal	V_{pn}			400		V
Input voltage measuring range	V _p		-600		+600	V
Input current nominal	I _{pn}			10		mA
Burden resistance	R _b	with ±12V at Ipn= ±400V	30		200	Ω
	5	with ±12V at Ipn= ±600V	30		100	Ω
		with ±15V at Ipn= ±400V	100		320	Ω
		with ±15V at Ipn= ±600V	100		180	Ω
Resistance of secondary winding	R _s			45		Ω
Resistance of primary winding	Rp			40		kΩ
Output offset current at $V_{pn} = 0$	I _{off}			±0.20		mA
Output current at V _{pn}	I _{out}			25		mA
Turns ratio	K			2500:1000		
Supply voltage (±5%)	Vs		±12		±15	V
Current consumption	I _c	at ±15 V		12 +l _{out}		mA
Variation of I _{off} wrt temperature	l _{ot}	-25 to 70 °C		≤ 0.80		mA
Linearity error	Σ_{L}			<0.2		%
Accuracy at V _{pn}	X _G			±0.8		%
Response time 90% of V _{pn}	t _{ra}			<40.0		μS
Total primary power loss				4		W
Ambient operating temperature	T _A		-25		+70	°C
Ambient storage temperature	Ts		-40		+85	°C
Mass	m			65		g


Input Output Characteristics





Mechanical dimensions



Connection Diagram

Voltage Sensor VHASM400T01

- Connector on the product: Faston tab Part no.- 62409-1, TE Connectivity AMP Connectors
- Suggested mating connector: Faston receptacle terminal part no. 63609-2, TE Connectivity AMP Connectors
- Sensor mounting: 4 holes X Ø 4.2mm, M4 steel screws, recommended fastening torque 2.0 N-m
- I_{out} is positive when V_p is applied to +HV terminal
- Power supply and output terminal is not protected against polarity reversal

Safety

• This Current Transformer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

- · Caution, risk of electrical shock
- When operating the Sensor, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).
- Ignoring this warning can lead to injury and/or cause serious damage.
- A protective housing or additional shield could be used.
- Disconnecting the main power must be possible
- Over voltage (»V_{PN}) or missing of the power supply voltage can cause an additional remaining magnetic offset.
- This Sensors may only be used in electrical or electronic systems which fulfil the relevant regulations (Standards, EMC Requirements)
- Pay attention to protect non-isolated high-voltage current carrying parts against direct contact (e.g. with a protective housing)
- When installing the sensor, ensure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.

General information:

Electrohms the reserves right to make modifications on products for improvements without prior notice.