

 $I_{pn} = 1500A$

Features

- Split core type
- Open loop current sensor
- Voltage output

Advantage

- Good linearity
- No insertion losses
- Low power consumption

Applications

- Used for measurement of electric DC current
- Pulsed in electric & electronic equipment

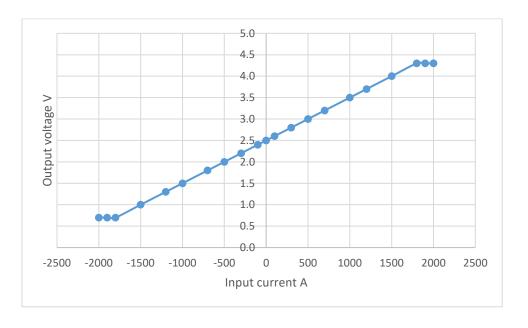
Application domain

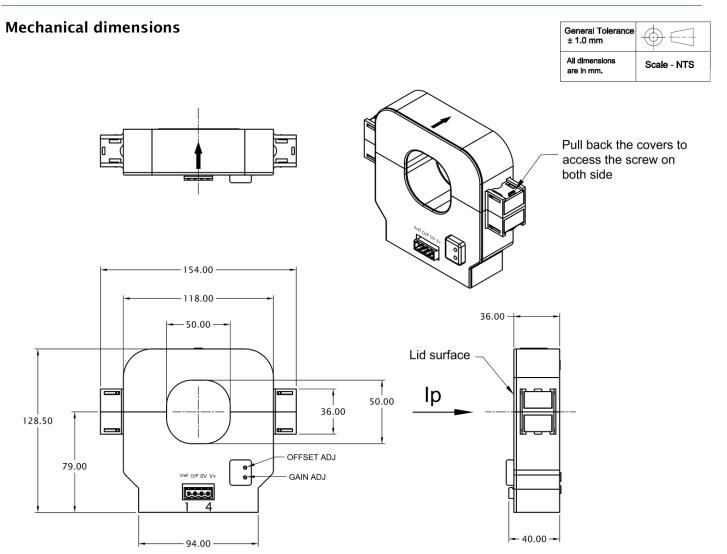
- Commercial
- Industrial

Standards

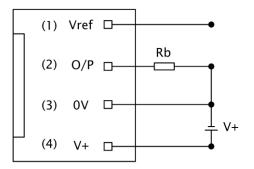
- EN 50178
- UL508

Insulation Characteristics


Parameters	Symbol	Value	Units
Dielectric strength between primary and secondary terminals,50Hz, 60 seconds	V _d	5.5	kV
Comparative tracking index	CTI	250	V
Insulation resistance at 500 VDC	R _{IS}	>100	ΜΩ
Creepage distance		61.50	mm
Clearance distance		40.00	mm


Specifications (Unless otherwise specified temperature is 25°C)

Parameters	Symbol	Condition	Min	Тур	Max	Units
Input current nominal	I _{pn}			1500		Α
Input current measuring range	Ip		-1800		+1800	Α
Burden resistance	R _b		10			kΩ
Output offset voltage	$V_{\rm off}$	at $I_P = 0$		2.5± 0.025		V
Reference voltage	V_{ref}			2.5 ± 0.025		V
Output voltage	V_{out}	at $\pm I_{pn}$, $R_b = 10k\Omega$,		2.5 ± 1.5		V
Output sensitivity	V _{sens}			1.0		mV/A
Supply voltage (± 5%)	Vs		+9.0		+18.0	V
Current consumption	I _c	at + 9.018.0V		18		mA
Accuracy at I _{pn} (Excluding offset)	X _G			± 1		%
Linearity error	Σ_{L}	-25 to +85 °C		0.5		%
Temperature coefficient of V _{out}	TV _{out}	-25 to +85 °C		500		ppm/k
Reaction time at 90% Of Ipn	t _{ra}					
Frequency bandwidth at -3db	BW			DC		
Output lowpass filter cut-off frequency	f _c			1.4		Hz
AC attenuation at 1500A		at 50Hz		-24		dB
di/dt accurately followed	di/dt					
Ambient operating temperature	T _A			-25 to +85		°C
Ambient storage temperature	Ts			-40 to +100		°C
Mass	m			1.0		kg


Input & Output Characteristics

Connection Diagram

DC Hall Effect Current Sensor HJA1K5T01

- Connector on the product: Connector header, part no- 1755752, Phoenix Contact
- Suggested mating connector: Connector housing, part no-1757035, Phoenix Contact
- It is recommended to centrally locate the current carrying conductor or completely fill the central opening for optimum performance
- Output increases when current (Ip) flows in the direction of arrow
- Ensure proper connection of power supply to avoid damage to the sensor

Safety

• This Sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

- Caution, risk of electrical shock
- When operating the Sensor, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).
- Ignoring this warning can lead to injury and/or cause serious damage.
- A protective housing or additional shield could be used.
- Disconnecting the main power must be possible
- Over currents (»I_{PN}) can cause an additional voltage offset due to magnetic remanence.
- The temperature of the primary conductor shall not exceed 100 °C.
- This Sensors may only be used in electrical or electronic systems which fulfil the relevant regulations (Standards, EMC Requirements)
- Pay attention to protect non-isolated high-voltage current carrying parts against direct contact (e.g. with a protective housing)
- When installing the sensor, ensure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.

General information:

Electrohms the reserves right to make modifications on products for improvements without prior notice.